

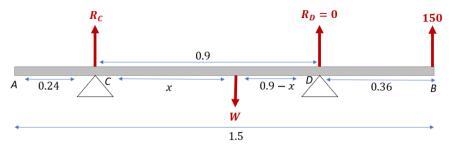
Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Mechanics M1 (WME01) Paper 01

Question Number	Scheme	Marks
1(a)	speed $(m s^{-1})$ 20 $T 180 + T 180 + 3T$	B1 shape B1 20 B1 T, T+180, 3T+180
		(3)
1(b)	T and $2T$ seen or implied, for acceleration and deceleration in that order	B1
	$4800 = \left(\frac{20 \times T}{2}\right) + \left(180 \times 20\right) + \left(\frac{20 \times 2T}{2}\right)$ $4800 = \left(\frac{20 \times T}{2}\right) + \frac{1}{2} \times 20\left(180 + (180 + 2T)\right)$ $4800 = \frac{1}{2} \times 20\left(180 + T + 180\right) + \left(\frac{20 \times 2T}{2}\right)$ $4800 = \frac{1}{2} \times 20\left(180 + 3T + 180\right)$ $4800 = 20 \times (180 + 3T) - \left(\frac{20 \times T}{2}\right) - \left(\frac{20 \times 2T}{2}\right)$	M1 A1 A1
	T = 40 (allow t)	A1
		(5)
1(c)	$20 = a \times \text{their } T \text{ oe}$	M1
	Acceleration = $\frac{1}{2}$ (m s ⁻²)	A1 ft
		(2)
	NOTES	(10)
(a) B1 B1 B1	Correct shape with acceleration steeper than deceleration (ignore entries on the axes). Correct vertical label. Correct horizontal labels. Accept use of their <i>T</i> or appropriately labelled delineators.	

(b)		
B1	Correct relationship seen or implied between the time accelerating and the	
	time decelerating.	
M1	A clear attempt to use the total area under the graph (or use <i>suvat</i> formulae) and equate to 4800 (or 4.8) to form an equation in T only or their unknown only (e.g. replace T by $\frac{20}{a}$). Must involve a triangle or a trapezium (M0 if they use a <i>single suvat</i> formula for the whole motion)	
A1	An equation with at most one error. (use of 3 instead of 180 is one error)	
	Having T and 2T round the wrong way, treat as one error	
A1	A fully correct equation	
A1	cao	
	N.B. If attempting to use a single trapezium, and '180' appears in the bracket	
	i.e. $\frac{1}{2} \times 20(T \text{ terms}' + 180)$, allow at least M1A1 for one correct parallel side.	
	N.B. $\frac{1}{2} \times 20(x + 180) = 4800 \implies x = 300 \text{ ONLY scores B0M1A1A0A0}$	
(c)		
M1		
A1 ft	Correct equation in a, using their T	
AIII	Correct answer, follow through on their '40'	


Question Number	Scheme	Marks
2(a)	Correct relationship between the speeds after the collision. v and $v+1$ OR $w-1$ and w	B1
	$(3m \times 1.5) + (m \times -1.5) = 3mv + m(v+1)$	M1 A1
	[Or $(3m \times 1.5) + (m \times -1.5) = 3m(w-1) + mw$]	
	Speed of $A = \frac{1}{2} \text{ (m s}^{-1}\text{)}$	A1
	Speed of $B = \frac{3}{2}$ (m s ⁻¹)	A1
		(5)
2 (b)	For B: $\pm m(1.51.5)$ OR For A: $\pm 3m(0.5 - 1.5)$	M1 A1ft
	3 <i>m</i> (Ns)	A1
		(3)
	NOTES	(8)
(a)	INOTES	
B1	speed of $B = 1 + speed$ of A . Must be seen before the CLM equation is used i.e. algebraic not numerical quantities	
M1	Dimensionally correct CLM equation with correct number of terms. Allow consistent extra g 's or cancelled m 's. Ignore sign errors. Allow the use of 2 unknowns for speeds after. (M0 if same speeds)	
A1	Correct equation in 1 unknown	
A1	Correct speed of A	
A1	Correct speed of B	
(b)		
M1	Dimensionally correct impulse-momentum equation using <i>A</i> or <i>B</i> with correct number of appropriate terms. Condone sign errors but must be difference of momenta. M0 if <i>g</i> is	
A1ft	included. Correct unsimplified equation. Follow through their answer in (a),but if using <i>B</i> , terms must have same signs, if using <i>A</i> , terms must have opposite signs.	
A1	Cao (must be positive)	

	Scheme	Marks
	Velocity = $(14\mathbf{i} - 5\mathbf{j}) + 2(-4\mathbf{i} + \mathbf{j})$	M1
	$Speed = \sqrt{6^2 + \left(-3\right)^2}$	M1
	Speed = $\sqrt{45} = 3\sqrt{5} = 6.7 (\text{ms}^{-1})$ or better	A1 cso
		(3)
	$ \begin{array}{c} 6 \\ \hline & \tan^{-1}\left(\frac{3}{6}\right) \end{array} $	M1 A1ft
	27° or better OR 333° or better 0.46 rads or better OR 5.8 rads or better	A1
		(3)
	$\mathbf{v} = (14\mathbf{i} - 5\mathbf{j}) + (-4\mathbf{i} + \mathbf{j})T \qquad \text{(allow } t)$	M1
OR	$\mathbf{v} = (6\mathbf{i} - 3\mathbf{j}) + (-4\mathbf{i} + \mathbf{j})t \qquad (t = T - 2)$	
	$\frac{14 - 4T}{-5 + T} = \frac{2}{-3}$	M1 A1
	T = 3.2	A1
		(4)
	NOTES	
Acce	ept the use of column vectors throughout	
Use	rect use of $t = 2$ to find the velocity (unsimplified). of Pythagoras to find the speed when $t = 2$ with <u>their</u> velocity. $\overline{5} = 3\sqrt{5} = 6.7 \text{ (ms}^{-1}\text{)}$ or better (6.70820). Must come from correct ocity.	
veloc Corr	rect equation for a relevant angle, ft on their v	
Corr	·	

(c)		
M1	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}T$ to obtain a velocity vector in T (allow t)	
M1	Use ratios, using <i>their</i> velocity , to produce an equation in <i>T</i> only	
1.22	(Allow reciprocal and incorrect sign)	
A1	Correct equation in T only	
A1	Cao	
	N.B. If they use their answer to (a) instead of $\mathbf{u} = (14\mathbf{i} - 5\mathbf{j})$ but never correct	
	their value of t, can score M1M1A0A0	
	N.B. If they use $\mathbf{v} = k(2\mathbf{i} - 3\mathbf{j})$ to produce 2 simultaneous equations in k and	
	T, and then they use a calculator to solve and get $T = 3.2$, award all the marks,	
	but if they get the wrong answer, they lose the last 3 marks.	

Question Number	Scheme	Marks
4.	$R_D = 0$ for scenario 1 or $R_C = 0$ for scenario 2	B1
	Scenario 1 $M(C) (150 \times 1.26) = Wx$	M1 A1
	Scenario 2 $M(D) (225 \times 0.36) = W \times (0.9 - x)$	M1 A1
	Solve simultaneously for W (or x) $e.g. \ 0.81W = 243$	dM1
	W = 300	A1
	x = 0.63	A1
	NOTES	(8)
	N.B. B0 means there are no other marks available.	
B 1	$R_D = 0$ for scenario 1 seen on a diagram or implied by working.	
	OR: $R_C = 0$ for scenario 2 seen on a diagram or implied by working.	
M1	Complete method to form an equation in W and a consistent unknown distance <i>only</i> , for scenario 1. All equations used must be dimensionally correct and have the correct no. of terms but condone sign errors. (M0 if $R_D = 0$ is never used)	
A1 M1	Correct unsimplified equation in W and x or their defined unknown distance. Complete method to form an equation in W and a consistent unknown distance <i>only</i> , for scenario 2. All equations used must be dimensionally correct and have the correct no. of terms but condone sign errors. (M0 if $R_C = 0$ is never used)	
A1 dM1	Correct unsimplified equation in W and x or their defined unknown distance Dependent on both M's, solve simultaneous equations for either W or their unknown	
A1 A1	Correct answer for W Correct answer for x This must be the distance stated in the question, from C to the centre of mass.	
	N.B. If they include g in a moments equation, they lose the A mark for that equation and both final A marks.	

Scenario 1

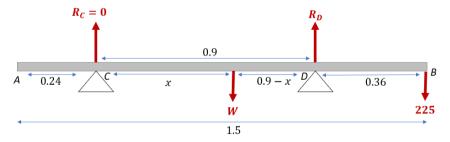
Equations with unknown distance, x, measured from C.

Complete method will involve one moments equation with $R_D = 0$ or two equations with R_C eliminated and $R_D = 0$.

M0 if R_D never equals zero

Vert
$$R_C + 150 = W$$

$$M(A)$$
 $(R_C \times 0.24) + (150 \times 1.5) = W(x + 0.24)$


$$M(C)$$
 $(150 \times 1.26) = Wx$

$$M(G)$$
 $R_C x = 150(1.26 - x)$

$$M(D)$$
 $(R_C \times 0.9) = (150 \times 0.36) + W(0.9 - x)$

$$M(B) \quad (R_C \times 1.26) = W(1.26 - x)$$

Scenario 2

Equations with unknown distance, x, measured from C

Complete method will involve one moments equation with $R_C = 0$ or two equations with R_D eliminated and $R_C = 0$.

M0 if R_C never equals zero

Vert
$$R_D = 225 + W$$

$$M(A)$$
 $(R_D \times 1.14) = (225 \times 1.5) + W(x + 0.24)$

$$M(C)$$
 $(225 \times 1.26) + Wx = (R_D \times 0.9)$

$$M(G)$$
 $R_D(0.9-x) = 225(1.26-x)$

$$M(D)$$
 $(225 \times 0.36) = W(0.9 - x)$

	$M(B) (R_D \times 0.36) = W(1.26 - x)$	
Question Number	Scheme	Marks
5(a)	$P \text{ to } Q$ $6x = \left(\frac{u+2u}{2}\right)12$	M1
	OR $6x = 12u + \frac{1}{2} \times \frac{u}{12} \times 12^2$	
	$\mathbf{OR} \qquad (2u)^2 = u^2 + 2 \times \frac{u}{12} \times 6x$	
	Reaches given answer from correct working $x = 3u$ *	A1*
		(2)
5(b)	Q to R	M1
	e.g. $(3u)^2 = (2u)^2 + 2(1.5)(15u)$	A1
	u = 9	A1
		(3)
5(c)	Q to S ($t = 14$ position)	3.51
	$QS = 2u \times 2 + \frac{1}{2} \times 1.5 \times 2^2$	M1 A1
	(4u+3)+18u	M1
	201 (m)	A1
(0)		(4)
(9)	NOTES	
(a)		
M1	Considers P to Q and forms a relevant equation in terms of u and x	
A1* (b)	Reaches given answer from correct working	
M1	Uses the given answer in (a) to form an equation in <i>u</i> only N.B. If brackets missing, allow M1, but allow recovery.	
A1 A1	Correct unsimplified equation in <i>u</i> only Correct answer	
(c) M1	Complete method to find the distance travelled in the 2 seconds after passing Q	
A1	Correct unsimplified expression in <i>u</i> only (or 39 m)	
M1 A1	Complete method to find the required distance (need 18 <i>u</i> or 6 <i>x</i>) Correct answer	
AI	COITCL allswei	1

Question Number	Scheme	Marks
- (02	Perpendicular to direction of motion:	M1
6.	$500\sin 40^\circ = P\sin \alpha^\circ$	A1
	Parallel to direction of motion:	M1
	$500\cos 40^\circ + P\cos \alpha^\circ = 900$	A1
	(i) Form and solve an equation in α $\tan \alpha^{\circ} = \frac{500 \sin 40^{\circ}}{900 - 500 \cos 40^{\circ}}$	M1
	$\alpha = 32 \text{ or better } (31.8683)$	A1
	(ii) Form and solve an equation in P $P = \frac{500 \sin 40^{\circ}}{\sin 31.868^{\circ}}$	M1
	P = 610 or better (608.736)	A1
	N.B. Penalise over accurate answers only once for the question.	
	ALTERNATIVE USING A TRIANGLE OF FORCES:	
	Cosine Rule: $P^2 = 500^2 + 900^2 - 2 \times 500 \times 900 \cos 40^\circ$	M1
	OR: $500^2 = P^2 + 900^2 - 2 \times P \times 900 \cos \alpha^\circ$ OR: $900^2 = P^2 + 500^2 - 2 \times P \times 500 \cos(140^\circ - \alpha^\circ)$	A1
	Sine Rule /Lami's Theorem:	M1
	$\frac{P}{\sin 40^{\circ}} = \frac{500}{\sin \alpha^{\circ}} = \frac{900}{\sin(140^{\circ} - \alpha^{\circ})} \text{(any two)}$	A1
	(i) Solve for α $\alpha = 32$ or better (31.8683)	M1 A1
	(ii) Solve for P P = 610 or better (608.736)	M1 A1
		(8)
	NOTES	
M1	Form an equation perpendicular to the direction of motion. Correct number of terms, condone sign errors and sin/cos confusion.	
A1 M1	Correct unsimplified equation Form an equation parallel to the direction of motion. If using $F = ma$ then must have $a = 0$. Correct number of terms, condone sign errors and \sin/\cos confusion.	
A1	Correct unsimplified equation	
(i) M1	Form and solve an equation in α (This an M mark so do not penalise accuracy of manipulation)	
A1	Accept 32 or better (i.e 32, 31.9, 31.87, as their final answer)	
(ii) M1		

A1	Form and solve an equation in <i>P</i> (This an M mark so do not penalise accuracy of manipulation) Accept 610 or better (i.e 610, 609, 608.7, as their final answer)
M1	ALTERNATIVE
A1	Use cosine rule to give an equation in P (and α possibly) Correct equation
M 1	
A1	Use sine rule to give an equation in P and α Correct equation
	N.B. They could use the Sine or the Cosine Rule twice to obtain their two equations.
(i) M1	Form and solve an aquation in or
A1 (ii) M1	Form and solve an equation in α Accept 32 or better (i.e 32, 31.9, 31.87, as their final answer)
A1	Form and solve an equation in P
	Accept 610 or better (i.e 610, 609, 608.7, as their final answer)

Question Number	Scheme	Marks
7(a)	$\frac{42mg}{5} - (m+M)g = (m+M)\frac{2g}{5} \text{where } M = (p+q)$	M1 A1
	OR : $\frac{42mg}{5} - Mg = M\frac{2g}{5}$ where $M = p + q + m$	
	(p+q) = 5m	dM1 A1
		(4)
7(b)	$\frac{14mg}{5} - pg = p\left(\frac{2g}{5}\right)$	M1 A1
	p=2m	A1
		(3)
	NOTES	(7)
	N.B. Use the mass in the 'ma' term to determine which part of the system is being considered.	
(a) M1	Form an equation of motion for the whole system with the combined mass of <i>P</i> and <i>Q</i> . Correct terms, condone sign errors. N.B. They may consider the 2 masses (<i>M</i>) and the lift separately and eliminate the normal reaction e.g. $R - Mg = M \frac{2g}{5} \text{AND} \frac{42mg}{5} - mg - R = m \frac{2g}{5} \text{AND} \text{add to}$	
A1	eliminate <i>R</i> Correct equation in <i>M</i> and <i>m</i> _for their <i>M</i> N.B. Award marks for a correct equation only if no wrong working seen.	
dM1	Rearrange to find an expression for the combined mass of P and Q . Must be a multiple of m	
A1	Cao	
(b) M1	Form an equation of motion for box <i>P</i> . Correct terms, condone sign errors. Fully correct equation.	
A1	Cao	

A1	N.B. They may find q (M1A1) and subtract from $5m$	
Question Number	Scheme	Marks
	Perpendicular to the plane:	M1
8 (a)	$R + 18\sin 40^\circ = 2g\cos 30^\circ$	A1
	Equation of motion parallel to the plane:	M1
	$18\cos 40^{\circ} - F - 2g\sin 30^{\circ} = 2a \text{ (or -}2a)$	A1
		A1
	F = 0.3R	B1
	$18\cos 40^{\circ} - 0.3(2g\cos 30^{\circ} - 18\sin 40^{\circ}) - 2g\sin 30^{\circ} = 2a$	dM1
	$a = 1.18 \text{ or } 1.2 \text{ (m s}^{-2})$	A1 cao
		(8)
9(b)	$v^2 = 2^2 + 2(1.18)5$	M1 A1ft
8(b)	v = 3.98 or 4.0 or 4 (m s ⁻¹)	A1 cao
	N.B. For (a) and (b), penalise over accurate answers ONCE only.	(3)
8(c)	$R = 2g\cos 30^{\circ} \left(= g\sqrt{3}\right)$	B1
0(0)	Friction = $0.3 \times 2g \cos 30^{\circ}$ OR $0.3 \times 2g \sin 30^{\circ}$	M1
	Compares Friction with weight component parallel to plane	
	Eg Consider: $2g \sin 30^{\circ} - 0.3(2g \cos 30^{\circ}) (= 2a)$	dM1
	OR $0.3(2g\cos 30^{\circ})-2g\sin 30^{\circ} (=2a)$	
	(a) > 0 OR $(a) < 0$	A1
	Concludes that <i>P</i> will not remain at rest oe	
		(4)
(15)		
NOTES		1
(a) M1	Correct number of terms, forces resolved <i>perp to the plane</i> where	
1411	appropriate, condone sign errors and sin/cos confusion, forces and	
	angles paired up correctly	
A1	Correct unsimplified equation.	
M 1	Equation of motion parallel to the slope. Correct number of terms, forces	
	resolved where appropriate, condone sign errors and sin/cos confusion,	
	forces and angles paired up correctly	
A1	Correct unsimplified equation with at most one error	
A1	Fully correct unsimplified equation	
B1	Use of $F = 0.3R$	
dM1	Eliminate F and R to form an equation in a , dependent on two M's	
A1	Correct value for a. Must be 2 or 3sf	

(b) M1 A1ft A1	Complete method to form an equation in v or v^2 Correct unsimplified equation. Follow through on their value for a . Cao. Must be positive. Note that $a = 1.2$ leads to $v = 4$.	
(c) B1 M1 dM1	Correct expression or value for new <i>R</i> Find the max friction. M0 if the previous <i>R</i> is used. Correct comparison between max friction value and weight component (force parallel to slope), dependent on previous M Correct statement from fully correct working. Concludes that <i>P</i> will not remain at rest.	